18201588123

热门搜索:

北京金业顺达科技有限公司主营:APCUPS电源,圣阳蓄电池,科士达UPS电源,UPS蓄电池,山特UPS电源,艾默生ups电源,松下蓄电池,理士蓄电池,汤浅蓄电池,艾默生精密空调,精密空调,直流屏蓄电池,模块化机房,一体化机房等,全国统一热线电话:18201588123。北京金业顺达科技有限公司凭借着高质量的产品,良好的信誉,优质的服务,产品畅销全国近三十多个省、市、自治区。

    圣能蓄电池批发商

    更新时间:2024-04-29   浏览数:151
    所属行业:能源 电池 铅酸蓄电池
    发货地址:北京市海淀区  
    产品规格:564561321
    产品数量:1020.00只
    包装说明:木箱包装
    价格:面议
    产品规格564561321包装说明木箱包装

    圣能蓄电池批发商

    圣能蓄电池内阻测试 - 概述

    本产品是快速准确测量电池运行状态参数的数字存储式多功能便携式测试仪。该仪表通过在线监测单体电池的电压和内阻,将监测到的数据进行存储和处理,对电池故障进行报警,精确有效地判别单体电池的优良状况。仪表对测试数据进行保存,查询、删除和导出。上位机软件对导入的数据进行处理,通过各种图表对数据进行分析和显示,自动生成电池的检测报告。
    圣能蓄电池内阻测试 - 主要功能及特点
    1. 可保存999组测试数据;用户对数据可进行查询、删除及传输。


    2. 数据可通过串口上传至计算机,也可导出到U盘。


    3. 人性化的操作界面,操作简单,流程清晰,每一步操作均有简洁中文提示。


    4. 上位机数据管理软件功能强大,界面友好,提供数据管理、打印、分析、报表统计、自动生成测试报告等功能。


    1.3技术指标


    1. 电压测量范围:0.000-25.000V。


    2. 电压测试精度:±0.2%rdg。


    3. 内阻测试范围:0.000mΩ-99.999mΩ。


    4. 内阻测试精度:±0.5%rdg。


    5. 通讯方式:RS232和USB。


    6. 显示方式:320×240点阵图形LCD。


    7. 工作电源:10.8V,2000mAh,可充电锂电池。


    8. 外形尺寸:280mm×105mm×83mm。


    9. 重 量:1.2kg。
    圣能蓄电池内阻测试 - 无法开机工作
    检查仪表与锂电池的接触情况,锂电池的电压可能太低没法开机,仪表的电池可能需要充电或更换。


    在仪表显示屏上方*显示出当前仪表电池块的容量情况,当电池处于满充时,方块为黑色,随着电池充电容量的下降,方块逐渐变为白色。


    1. 将适配器插入电池充电器接口,将适配器电源连接到交流电源插座上。


    2. 当适配器绿灯亮时,表示充电完成。


    注:充电长时间为6到8个小时,不要过度充电
    圣能蓄电池内阻测试 - 测试探针针头弯曲或者不能回缩
    更换探针针头,步骤如下:

    blob:http%3A//m.b2b168
    1. 用钳子夹住套筒**上的探针针头


    警告:不要夹住装着探针针头的套筒,以免损坏探针。


    2. 将探针针头直直的拔出来;


    3. 用钳子夹住行的探针针头,将它放入套筒;


    4. 将探针针头推向一个比较柔软的表面,如纸板,直至探针针头**到套筒的底端。
    圣能蓄电池内阻测试 - 测试数据查询出现紊乱
    可能是仪表数据受到强干扰造成,建议把有效的数据导入计算机管理,然后进入仪表“系统管理”菜单,选择“格式化存储器”即可。
    圣能蓄电池内阻测试 - 测试内阻时提示“请检查电池夹连接”
    首先要保证电池夹同电池较柱连接正常,同时被测电池电压不能低于1.5V。
    圣能蓄电池内阻测试 - 不能通过U盘导出数据
    建议使用仪表厂家配备的U盘,然后检查U盘格式,好是FAT格式。
    圣能蓄电池内阻测试 - 不能通过RS232串口导出数据
    请先确认计算机串口选择是否正确;然后,仪表必须是在主界面下才能通过RS232串口导数据。
    圣能蓄电池内阻测试 - 注意事项及其它
    注意事项
    1. 请用户严格按照本说明书操作,严禁违规或野蛮操作。


    2. 产品贮存中应注意防潮、防火。


    3. 本说明书中图示及说明可能与实物有细微差别,请以实物为准。
    技术信息支持及服务
    1. 非本公司维修人员或授权维修人员不得擅自维修!


    2. 未经本公司许可擅自拆机维修,保修自动失效!
    蓄电池内阻测试 - 附录
    1.“基准值”以及电池的判别方法


    电池学者们希望一开始就有可用于分析的电池容量和内阻的测量数据。


    他们寻求找出电池在**和容量**时的内阻数据,以确定电池所处的状况。理想的做法是在电池的安装工作完毕后。对电池进行验收时,进行容量测试并测定内阻。此时的结果应是非常一致的。它们会被做为基准值。用来同以后测量到的内阻数据进行比较。


    另一个获取数据的方法,是在对同期同型号的电池测定完容量后,再取得同型号电池内阻的数据。


    注意:以上提到的电池内阻数据与容量之间并没有直接的关系,它只能是做为了解电池容量的一个比较和参考。要特别注意的是,这些数据是用来建立一套基准值的。通常在浮充的情况下会出现一串电池的内阻是一致的,但容量方面却存在问题。这时建议至少要做大致的维护及负载测试,以对测量的内阻进行验证。


    2. 判别方法

    blob:http%3A//m.b2b168
    如果电池的内阻****基准值的50%或更高,则应更换这个电池。


    其中建议内阻在**基准值25%至43%时,要与生产商联系。在**43%时,要对其进行负载测试。


    有些人认为:所有(新电池或性能完好电池)的数据都集中在基准值周围,而后期测试取得的数据,都能合理地接近任何趋势曲线。也即是,高容量电池有统一的低内阻,而低容量电池的内阻会按比例增高。但事实却使这些人失望,就算在严格控制下生产出来的新电池也不可能符合上述特性。


    在用户自行测试过程中,会发现有一些大容量电池的内阻非常高。同样,具有低阻特性的正常电池无法进行容量测试。不幸的是,在目前的技术状态下,不借助负载测试,用户无法用测试阻抗、电导、导纳及电阻的方法来区分这些不规则的电池。


    如果用户有幸拥有大量的电池容量和与之对应的内阻数据便可以很容易地建立一套基准值,从而完成上述判别这些不规则电池的工作。当刚开始这个基准值建立工作时,或者只有少数的特殊型号的电池,可从猜测的大概数据中优选出一些做为基准值。


    圣能蓄电池总代理-圣能电池


    一、概述
    目前,蓄电池监测模块大多都是电压巡检仪,在线监测电池的浮充电压,在**出设定值时给出报警。相对以前的整组电压监测方式来说,单体电压监测是前进了一大步,但对于电池的长期运行过程中的容量衰减以至失效的监测,电压能反映的问题非常有限:100Ah的电池和衰减至10Ah的电池在浮充电压上的差异很难区别开来。因此,需要从蓄电池的失效模式进行探讨,从而解决蓄电池的监测问题。
    二、阀控铅酸蓄电池的失效模式
    对于阀控式铅酸电池,通常的性能变坏机制有以下几种情况:
    1、热量的积累
    开口式铅酸电池在充电时,除了活性物质再生外,还有硫酸电解质中的水逐步电解生成氢气和氧气。当气体从电池盖出气孔通向大气时,每18克水分解产生11.7千卡的热。
    而对于阀控式铅酸电池来说,充电时内部产生的氧气流向负极,氧气在负极板处使活性物质海绵状铅氧化,并有效低补充了电解而失去的水。由于氧循环抑制了氢气的析出,而且氧气参与反应又生成水。这样虽然消除了爆炸性的气体混合物的排出问题,但是这种密封式使热扩散减少了一种重要途径,而只能通过电池壳壁的热传导作为放热的一途径。因此,阀控铅酸电池的热失控问题成为一个经常遇到的问题。
    阀控铅酸电池依赖于电壳壁的热传导来散热,电池安装时良好的通风和较低的室温是很重要的条件。为了进一步降低热失控的危险性,浮充电压通常具体视不同的生产者和不同室温而定。厂家一般都给出电池的浮充电压和温度补偿系数。
    2、硫酸化
    阀控式比开口式电池更易产生的问题是负极板的硫酸化。这是由于:
    1)氧的循环引起的负极板较低的电位;
    2)在强酸电解质汇集的电池底部形成的酸的分层,在这种不流动,非循环的电解质系统中是很难避免的。
    这两个都可能在浮充条件下产生一定数量的残留硫酸盐,然后转变成*性的硫酸盐形式。因此,当较板加速去活化时,可用的放电安时容量就会减小。随着负极板温度的升高,这种状况会更加恶化。由于氧循环反应的发生,负极板表面被氧化,相当数量的热释放出来。
    3、正极板群的腐蚀和脱落
    阀控式铅酸电池中,这种形式的性能变坏本来就更加严重。由于氧循环反应,负极活性物质被持续氧化生成硫酸铅,有效地维持了放电状态,因此降低了负极板的电位。而对于给定的浮充电压正极板群的电位则相应较高。因而氧化气氛加剧了,引起了更多的氧气的析出,使活性物质的腐蚀与脱落加剧。
    4、电池的干涸
    在使用期间气体再复合机制的有效率不是**,水被电解生成氢气和氧气的速度虽然低于相同大小的富液式电池的电解速率的2%,但水还是会逐渐失去。
    当失水是主要的失效原因时,电解质的比重将会增加,当比重由初的1.30增至1.36时,表示失水度约达到25%。在失水度达到25%时,酸的高浓度加速了硫酸化,电解质比重又开始下降。电池电压直接正比于电解质比重,因此电池电压并不是电池健康状况的可靠显示。
    5、负极上部铅的腐蚀
    正极板栅和较群的腐蚀性在铅酸电池的各个设计中都是本来就有的。与之形成明显对比的是负极板位于高度还原气氛,在开口式电池中位于较群汇流排通常浸在电解液液面以下,这样就避免了由于正极板群上冒出的氧气而产生的侵蚀。但是阀控电池的许多设计没有保护较板板耳、较群和汇流排,特别是两者之间的焊接接头。因此,它们暴露在从氧循环中逃溢出来、在电池板群上部的连续的氧气气流中。依赖于板栅(板耳)和较群所选铅合金的一致性和生产质量(需要板栅部分完全溶化焊接和汇流排的低孔隙率),迅速氧化可能就会发生。
    三、蓄电池监测系统的研制
    为了给蓄电池提供良好的运行环境,在线监测电池的工作状况,电池管理系统(BMS-BatteryManagementSystem)应运而生,成为高可靠电源系统的关键一部分。
    1、电池单体的内阻测量
    内阻R反比于传输电流的横截面积A。活性物质的脱落、较板板栅和汇流排的硫酸化和腐蚀、干涸都可降低有效的横截面积A,所以可通过测量内阻来检测电池的失效。
    内阻和电池状态的相关程度可变性很大。从报导的相关性来看,变化范围从0%到**。英国电子协会(ERA)对用阻抗监测的实验室设计和商用设计两种产品进行了大量的电池调查,发现二者的准确性在50%以上。一个基本的困难是测量小变化数值的精度问题。正常的300安时备用电流的电阻仅在0.25×10-3欧姆的数量级。因此,很小而且有意义的电阻变化可能观察不到。在下面的操作环境下,问题更加严重。
    1)在线测量期间存在的变压器的“噪音”和浮充电压波动引起的*。
    2)腐蚀裂纹对内阻的影响是有高度方向性的,内阻数值对平行于电流方向的裂隙是相对不敏感的。
    3)电解质浓度的变化,继而电池的变化使得结果很难解释。
    虽然内阻测量法很难准确测量电池的容量,内阻/容量的对应关系很难复现,但对于BMS来说,内阻测试只是用于电池单体之间的比较,而且计算机可以对内阻的变化进行记录和数据处理来预告电池容量衰减和失效,因此,内阻测试对于BMS而言是关键技术之一。
    对于离线或电池开路情况下测量内阻而言,测量时可方便地将激励电流回路与电压测量回路以4端子方式与电池组中的单体相连接,但对于在线测量,很难解决激励和测量的问题。
    目前大多采用在电池组两端并联放电器,因为有充电器和电池组并联,需要将充电器停止工作,而且要实时同步测量电池的电流变化和电压变化,很难处理采样*。
    采用中点抽头的激励装置,与目前采用的在电池组正负极两端施加激励的内阻测试装置相比,由于连接了中点抽头,激励装置的电流通过中点抽头后经上部电池组和下部电池组到达电池组的正极和负极,消除了电池组外部充电器和用电负载的并联影响,在电池上产生了稳定的电流激励,能够准确测试电池的内阻。
    2、系统结构
    一般系统中阀控铅酸蓄电池(VRLAB)的配置一般是:
    500kV变电直流系统:2组全容量电池,3台充电机。
    220kV变电直流系统:1组全容量电池,2台充电机。
    110kV变电直流系统:1组全容量电池,2台充电机。
    以108只2V、18或19只12V电池为主。电池的安装摆放形式也差别很大,电池与操作间的距离不确定。
    BMS由控制单元、测量模块、相关软件和辅助部件构成,一个控制单元可接入多个测量模块,完成对不同只数和不同电压的多组蓄电池的监测管理。控制单元用于数据传输、数据处理及人机界面控制,具有RS-232连机接口和RS-485远程(集中)管理接口、测量模块控制接口、操作键盘、显示面板、声光报警及报警输出控制接点。控制单元实时显示电池数据,智能分析数据,对异常的电池运行情况进行及时报警。
    测量模块用于蓄电池数据的巡检,内置CPU独立高速工作,除进行常规电压、电流、温度等测量外,与内阻测试模块连接后可准确在线测试电池内阻。测量模块安装在电池附近,与控制模块之间通讯连接,方便现场接线安装。
    3、系统的参数设置
    BMS系统作为一个完整的监测系统,首先应该通用于直流220V系统、直流110V系统、直流48V系统,以及直流24V系统,设计时便考虑了其通用性,主监控模块和内阻检测模块是通用的,对于不同的系统,只需要增添数量不同的采集模块,同时,设定每一个采集模块的电池采样数量。因此,系统需要设定如下系统参数和报警参数:
    1)采集模块数量
    2)采集电池数量少的采集模块的电池采集个数
    3)后台通讯地址设置
    4)后台通讯波特率设置
    5)电池组浮充电压上下限
    6)单电池浮充电压上下限
    7)内阻阈值
    8)容量报警
    9)过流报警
    10)温度异常
    其中**项为系统设定,后六项为报警设定。
    4、电压、电流巡检与数据分析
    初的电池监测装置只是检测电池组的端电压、电流和温度,并将检测数据与设定的上下限比较,给出报警提示。电池巡检仪可以对每一个电池单体进行电压测量,并对浮充电压**限报警。
    大多数电池厂家的技术人员将电压测量放在**,对于处在浮充状态的电池,其浮充电压的细微差别可体现电池的荷电状态,能判断电池的严重失效,因浮充电流很小,电池之间的性能差异(以容量差异为主)很难表现出来。BMS对电池的完整工作过程进行监测,实时测量在充电、浮充、放电的不同状态下的电压、电流,并采用不同的数据处理方法,以提高数据分析的准确性。
    浮充电压与温度的关系可按生产厂家提供的斜率进行补偿。
    VF=V0+k(T-T0)
    一般情况下k=3~5mV。
    5、剩余容量计算
    试图通过某种方法在线测得电池的实际保有容量一直是电池用户迫切的希望,但到目前为止,还没有这样的方法或算法。有些介绍用电池内阻来计算保有容量的资料或产品广告,但实际使用起来数据的对应关系并不严格,内阻只能用于区别电池容量的大幅度变化。尤其是利用电池内阻的相对变化可以准确预报电池落后。
    当电池处于放电工作时,对于很多场合都需要知道电池的剩余容量及供电时间,根据电池的额定容量和放电电流的监测,不难实时计算出剩余容量,假定负载相对稳定,则换算出供电时间。一般情况下,电池制造厂都给出在不同放电信倍率下的电池容量。
    用小二乘法根据电池厂家提供的在不同倍率下的放电容量,可以简化地用二次曲线来表示电流和容量之间的关系,分别求得a、b、c:
    6、电池运行事件记录
    BMS的另一方面重要作用记录运行数据,以便在电池出现故障时进行追踪,确定是由于电池质量的原因还是不正常的使用所造成的。对于长时间的连续运行,要记录所有的数据不仅对硬件要求高,也没有实际意义。BMS设计有事件产生器,依据事件产生规则将电池正常运行情况以事件形式存储,大幅减小数据量,而且方便查询管理。主要包括:
    1)浮充电压过高、过低
    2)充电电流过大
    3)放电电流过大
    4)工作温度过高、过低
    5)内阻变化
    6)深度放电
    事件记录当时的数据和持续时间。对于电力系统的电池运行特点,要求事件产生规则有较强的鲁棒性,可以屏蔽合闸冲击和测量。
    如果电池组中存在个别落后电池,则放电容量由差的电池决定。
    7、远程管理
    随着无人值守变电站的推广,电池的在线监测更加必要。电池监测设备可以和集中监控系统联机,通过远程管理软件可以查看电池的当前运行状况和所记录的历史运行事件,及时得知监测过程发出的报警信息,决定是否派人维护,也可以通过远程遥控进行更深一步的测试。
    8、实测数据分析
    通过对六只不同容量不同电压等级的电池进行测试比较,其中标准内阻采用日本进口单电池内阻测试仪,标准电压采用0.1级标准数字万用表测试。在线测量由BMS电池巡检仪测的,具体数据如下(内阻单位为毫欧,电压单位为伏):
    通过测试分析,BMS电池巡检仪测试准确,精度高,完**胜任蓄电池系统的在线监测。

    http://kmty.cn.b2b168.com